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A N A L Y S I S  O F  A E R O D Y N A M I C  D R A W I N G  

OF A T H I N  N O N I S O T H E R M A L  J E T  OF A V I S C O E L A S T I C  F L U I D  

A .  L. K a l a b i n  UDC 532.526 

The essence of aerodynamic drawing of a jet (ADJ) lies in the fact that  the drawing force is an 
aerodynamic frictional force between the jet and the air Far(x). The author [1] proposed a mathematical ADJ 
model that allows one to calculate the jet parameters under various conditions of its motion. 

The goal of the present paper is to study the jet parameter." after drawing (when they remain almost 
unchanged for x = L) versus various conditions of its motion, namely, to find the final velocity V = v(L) or 
diameter D = d(L) and temperature T(L)  = 7"f of the jet versus the conditions of its motion. 

The ADJ simulation results can find applications in the development of the technology of aerodynamic 
formation of chemical fibers (AFF). In AFF, the drawing force is a frictional force between the fiber and the 
air that appears as a result of using an injector which is placed on the path of fiber motion and forms an air 
flow along the fiber being formed. In production of nonwoven materials from a polymer melt, this method 
makes it possible to produce the fiber and the final product in a single technological step. One should mention 
that the final diameter D and temperature Tf of the fiber determine to a considerable extent the quality 
of the nonwoven material obtained by self-adhesive fiber connection. Some technological and physical AFF 
problems were considered by Genis et al. [2--4]. Some mathematical AFF models are known [5, 6]. 

1. Basic  E q u a t i o n s  a n d  B o u n d a r y  C o n d i t i o n s .  For a more adequate description of ADJ, a 
modified mathematical model that  is more perfect in comparison with that in [1] is proposed. According 
to [7, 8], a more general equation of jet motion that incorporates the viscoelasticity of a fluid whose viscosity 
is representable as the function I~(T, dv/dx)  [7] was derived based on the balance of forces acting on the jet 
during motion: 

v" + {[In(p/v)]' + [Asfv -~ - pv]}v'/l~ + {pg - sign ( Av)AarAV2-~v~ /tz = 0. (1.1) 

Here and below, v ~ = dv/dx;  the prime denotes differentiation with respect to x, x is the coordinate along the 
jet propagation, g is the acceleration of gravity, p is the density of the fluid, c I = acRe -~ is the coefficient of 
aerodynamic friction, p0 is the density of the medium, A v  = v(x) --u(x)  is the difference between the velocities 
v and u of the jet and the medium, respectively, Re = 2RlAvl /uo  is the Reynolds criterion, ac and ~ are the 
constants, a is the coefficient of surface tension, G is the flow rate of the fluid, v0 is the kinematic viscosity 

2 ~ "  ~'~r "G ~~ = (~r/2)~-'p/G. of the medium, R(x)  is the current jet radius, Aar = acpo( / o)-  ( P~ ) " , and AsI  
The one-dimensional equation (1.1) was obtained under the assumption that the distribution of the 

axial velocity over the transverse cross section of the jet is uniform. The basic assumptions of the theory of 
motion of a thin jet are given by Chang [7] and Zyabitskii [8]. 

For fluid viscosity, according to [7, 9], the function/z(T, dv/dx)  is taken in the form 

# = 3#0 exp [~(1/T - 1/To)l{mo + ml(v ' )q-1} ,  (1.2) 

where #0 is the longitudinal viscosity at temperature To, B = E /Rc ,  E is the activation energy, Rc is the gas 
constant, and m0, rnl, and q are the constants depending on the nature of the material. 

One-dimensional equations were used to describe the heat exchange of the jet and the medium [1-8]. 
However, analysis has shown that  for a thin jet, with radius R -~ 5 - 10 -5 m, velocity v ,~ 100 m/sec, and 
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motion path L ~- 1 m, the uniform temperature distribution over the jet radius is not established. Therefore, 
for description of this process, one should apply a two-dimensional equation, because the temperature T has 
a strong effect on the viscosity # (1.2) and on the jet motion. The heat-exchange equation is of the form [7] 

Cp(T)vO~Tox _ l r  OrO ( ~ ( T ) r ~  -)  " (1.3) 

Here T(r, x) is the temperature of the jet, C is the specific heat, and )~ is the coefficient of thermal conductivity. 
For x = 0, the initial conditions are as follows: 

T(r,O) = Tl(r), (1.4) 

and the boundary conditions at the outer boundary of the jet r = R(x) are 

_)  cgT(R,x) _ c~[T(R, x) - Ts(x)], (1.5) 
Or 

where Ts is the ambient temperature, c~ = 2~oanRe'r/R is the heat-transfer coefficient calculated from the 
relation Nu = anRe "r [8], ,k0 is the thermal conductivity of the medium, and an and "y are constants. In the 
center of the jet, the symmetry condition is 

OT(O, x) 
O~ - 0. (1 .6 )  

The coupled system (1.1)-(1.6) is a mathematical model of motion of a nonisothermal jet. The 
temperature distribution over the jet length affects its viscosity (1.2) and, according to (1.1), the velocity 
of the jet. The jet velocity affects, in turn, the temperature distribution through the heat-transfer coefficient 
(1.5). In view of this, system (1.1)-(1.6) was solved jointly. The ordinary differential equation (1.1) was solved 
by the fourth-order Runge--Kutta method, with a constant step. The presence of the moving boundary R(x) 
creates additional difficulties in solving Eq. (1.3), and, hence, for transition from the unstationary R(x) to 
stationary boundary, the Mises transform [i0] was used, which introduces a new nondimensional variable q 
determined by the formula T/ =- r /R(x) .  To solve the nonlinear equation (1.3), the implicit scheme of the 
finite-difference method [10] was employed. The algebraic system of equations was linearized by the method" 
of iterations, whose number did not exceed three in calculations. 

Together with the algorithm of selection of boundary conditions [1], the mathematical ADJ model 
makes it possible to calculate the jet parameters under various conditions of its motion. 

2. Iden t i f ica t ion  of t h e  M a t h e m a t i c a l  Mode l .  For numerical ADJ simulation, we use the values 
of the parameters of the AFF technological process and also the experimental data from [2-4]; the viscoelastic 
fluid is a polypropylene melt. The numerical values for all the quantities used are given in (1]. 

For a numerical simulation of the jet motion, a mathematical model should correspond to a real 
process parametrically. For this purpose, the residue method [11] with respect to the experimental velocity 
v(x) and temperature T(x)  distributions of the jet along the x motion, which are known from [2-4], was used. 
Identification is necessitated by the determination of all coefficients used in the mathematical ADJ model. 
The identification criterion was chosen in the form of the functional 

L 
= /(~2v(x ) + ~ (x ) ]  dx --.-} min, (2.1) I 

0 

where ev(x) = re(x) - vr(x, k) and ~T(X) = Tr - Tr(x, k) are the differences of the experimental and 
calculated values of the velocity and temperature distributions. The coefficients to be identified are presented as 
the vector k = {#0, ~, rn0, rni, q, an, % ac, t~} whose initial values are taken from [2-4]. Satisfactory agreement 
of the calculational and experimental data, which corresponds to the fullfilment of relation (2.1), was obtained 
for ac = 1 and ~ = 0.55, with other k components being unchanged. The change of only the components ac 
and ~ in the vector k in the identification is caused by the fact that precisely these components determine cf 
(1.1) and, therefore, affect to a considerable extent the drawing force Far(x) [8], which mainly contributes to 
the dynamics of jet motion upon aerodynamic drawing. 
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To find the dependence V(k) at the above-indicated initial values of the coefficients and successive 
variation of one of them, a numerical simulation was performed. The results of simulation and qualitative 
analysis of the dependence V(k) coincide. As an illustration, we consider the inversely proportional dependence 
of the final jet velocity V on the fluid viscosity at the initial temperature, denoted as V --~ 1/#0. An increase 
in/to will lead to an increase i n / t  (1.2) and in the rheological force Frh(x). Following from the law of energy 
conservation, the work of the drawing force Far(x) is spent on the work on jet drawing, proportional to the 
theological force, and on the kinetic energy, proportional to the square of the filament velocity v 2. An increase 
in Frh(x), therefore, causes a decrease in V. 

3. Ana lys i s  of  , let  M o t i o n .  It is interesting to analyze the character of variation of th'e physical 
coefficients Re, cl, and Nu on the path of jet propagation. The dependences Re(x), ci(x), and Nu(x), obtained 
by simulation, are presented in Fig. 1, where curves 1-3 correspond to ]Av(x)l , Re, and c f, respectively. The 
dependence Nu(x) is of a form similar to Re(x). It is worth noting that  in ADJ, Re is dependent on the relative 
velocity Av of the jet and the medium, rather than the jet velocity v. The function Av(z) is sign-variable, 
and, therefore, its modulus enters Re. According to relations (1.1) and (1.5), precisely Av(x) and then Re 
determine the values of the coefficients cf and Nu. 

The dependence of the properties of the jet at the end of motion on the basic motion parameters Ts(x), 
u(x), and G, which we denote as the components of the vector c, was obtained by simulation as well. The 
dependence V(c) was found by the method of successive variation of the component c, with constant values 
of the others. The results are given in Figs. 2 and 3. Curves 1-6 in Fig. 2 correspond to V(G), V(Ts), V(Ls), 
Tf(G), Tf(Ts), and Tf(Ls). The reference values of Ts(z) and u(x) are taken from [2-4]. 

In finding the dependence V[Ts(x)], the temperature function of the medium was used in the form 
(Ls = 0.2 m) 

~' T s = c o n s t  for z < L s ,  
Ts(x) 

1 300 K for x > L s ,  

where Ls is the duration of the stepwise function Ts along the path of motion, which was varied as well. As 
the temperature Ts of the medium rises, the mean temperature of the jet along the motion increases, which, 
in accordance with (1.2), decreases the value of viscosity/t  and leads to an increase in V, for an unvaried 
drawing force. The dependence obtained is close to a linear one, which is approximated satisfactorily by the 
linear function V = 74 + 0.18Ts (Ts in degrees C). Similar arguments explain the proportional dependence 
V ,-, Ls (see Fig. 2). 

In the simulation, the function of air velocity (of the medium of jet motion) is as follows: 

I u(x) for x < 0 . 3 m ,  x > 0 . 4 m ,  
u s ( x )  = 

u = c o n s t  for 0 . 3 < x < 0 . 4 m  

(the experimental value of u(x) is taken from [2-4]). An increase in us leads to an increase in the drawing 
force Far(x) and, according to the law of energy conservation, gives rise to the increase in the final jet velocity 
V. The dependence V(us) is close to a linear one, which is satisfactorily approximated by the linear function 
V = 0.Bus - 14. 
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The dependences V(c) and Tf(c) obtained are monotone functions, except for V(G), which has a 
maximum for G = 0.7 (see Fig. 2). This maximum is accounted for by the fact that the initial radius of the jet 
R(0) is proportional to G, and, therefore, for G < 0.7 the filament becomes rather thin and, as a consequence, 
its cooling for the motion time leads to a drastic increase in viscosity kt and to a decrease in jet velocity V. 
This is supported by calculations of the temperature distribution in the jet. For G > 0.7, the inertial force 
grows substantially with increasing G, thereby decreasing V for a constant drawing force. 

For comparison, Fig. 3 shows the experimental data from [12] [points (a) refer to D(G) and points 
(o) refer to D(P)] and the calculational data (curves 1 and 2 refer to D(G) and D(us), respectively)�9 The 
calculational dependence D(us) has been obtained, which is compared with the experimental dependence on 
air pressure P in the injector. The comparison of these functions is possible owing to the linear dependence 
between the pressure and velocity of the air leaving the injector [13]. 

A satisfactory coincidence of the calculational results has been obtained, which demonstrates the 
adequacy of this mathematical model to a real phenomenon. The discrepancy between the calculational and 
experimental data can be explained by both the incorrectness of the mathematical model used, which was 
developed using some assumptions, and the incomplete information on the conditions of the experiments the 
results of which were reported in [12]. 

This work was supported by the Russian Foundation for Fundamental Research (Project Code 95-02- 
05911-a). 
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